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Abstract—Team Anant is a group of undergraduate students at 
the Birla Institute of Technology and Science, Pilani, working 
on the design and development of a 3U CubeSat. The proposed 
3U CubeSat features a hyperspectral camera as its payload 
which requires stringent control maneuvers for imaging and 
generates a large amount of data. The On-Board Computer 
features a Zynq-7000 SoC consisting of two ARM Cortex A9 
cores (PS) and a field programmable gate array (PL) on the 
same silicon. The PL is responsible for implementing a 
hyperspectral image compression algorithm while the PS is 
responsible for housekeeping and running attitude control and 
determination algorithms among other tasks. Verification of 
the design is a critical step in the development of a 
nanosatellite. Conventional in-loop simulations use testbeds as 
a means of simulating the space environment to verify the 
functional integrity of developed modules. In this paper, a 
simulation scheme is discussed which replaces some of the 
hardware test beds with satellite models running on a 
computer which allows reduced dependence on the attitude 
and control subsystem (ADCS). The simulation is done in 
order to test the functioning of the attitude control algorithm, 
with as much resemblance to the actual nanosatellite as 
possible and with minimum budget. The loop comprises of two 
Arduinos, Zedboard (an evaluation board for Zynq), DC-DC 
converter and satellite models running on a computer.  One of 
the Arduinos is used to emulate the magnetometer which 
senses the magnetic field in space. The satellite simulator 
running on the computer sends the information to this 
Arduino, which is interfaced to the Zedboard via an I2C 
interface. The B-dot algorithm running on the Zedboard is 
used to calculate the required actuation and generates a PWM 
wave accordingly. This PWM wave is given as an input to a 
DC-DC converter which gives an analog voltage based on the 
width of the PWM wave. The other Arduino is used to emulate 
the actuator which takes an input from the converter circuit. 
This voltage is converted to current and sent to the actuator 
model running on the computer to determine the generated 
torque and hence its effect on the satellite is calculated, thus 
completing the feedback loop. Although the paper focuses on 
detumbling using B-dot, it can be generalized to the simulation 
of any subsystem of the satellite and can be used as a first step 
in the functional verification. 
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1. INTRODUCTION 

The miniaturization of the satellites in the form of CubeSat 
platform provides a low cost alternative for space agencies 
to test new technologies as well as students and amateur 
scientists to gather experience in the field of aerospace 
engineering. CubeSats have gained much attention in the 
past few years due to their ease of development, lesser lead 
time and manufacturing cost in comparison to bigger 
satellites. 
 
Team Anant, a student satellite team at BITS, Pilani is 
working on the development of a 3U CubeSat with a 
hyperspectral imager. The satellite can be classified into six 
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subsystems viz. Onboard Computer (OBC), Telemetry & 
Telecommand (TTC), Attitude Determination & Control 
System (ADCS), Electrical Power System (EPS), Payload, 
and Structure and Thermal Systems [2].  
 
The testing and verification of onboard software and 
satellite components for CubeSats still heavily relies on pre-
existing test beds which have high procurement costs, often 
limiting the development process for budget restricted 
student teams [1]. Alternatively, entirely software based 
testing can be carried out having its own limitations like 
integration testing of various hardware drivers and 
interfaces becomes difficult. Further, the latency added by 
the interfaces used, especially if many sensors are connected 
on the same bus, becomes harder to measure in purely 
software based testing.  
 
Satellite detumbling is a critical process that requires real-
time capabilities and high performance from the OBC. This 
process  decreases the angular velocity of the satellite to 
below a certain threshold. It forms an important part of any 
CubeSat mission requiring active control because a 
tumbling satellite has diminished power generation 
capability and increased the latency in pointing the satellite 
for certain tasks like data downlinking and remote sensing. 
In a centralized architecture (as the one proposed by the 
authors), it is possible that the ADCS control algorithms 
might be implemented on the OBC. This results in a huge 
interdependency between the OBC and ADCS. Given the 
importance of a low latency, high-throughput response from 
the processor during the control process (to achieve a 
predefined time to convergence), a rigorous methodology 
for a ground-test and evaluation is mandated. Conventional 
testing procedures employ hardware test beds comprising of 
air bearing and helmholtz-cage based magnetic field 
simulators [4]. This paper presents a novel hybrid hardware-
software approach devised by the authors for testing the 
control algorithms that are employed onboard. This method 
allows us to test the latency of the processor and the 
interfaces used, however, it does not require building an 
actual hardware to simulate the space environment and the 
sensors/actuators. 
 
 

2. SATELLITE ARCHITECTURE  

Our satellite’s functioning has been divided into six 
subsystems or modules. The functioning of these modules is 
distributed in a mutually exclusive and exhaustive way, 
covering all the aspects of satellite’s mission and 
maintenance [2]. The functioning of these subsystems is 

interdependent. A brief description of the subsystems and 
their tasks is given below: 
 
Onboard Computer (OBC) 

The OBC controls, coordinates and monitors the functioning 
of the other subsystems of the satellite. Based on the 
satellite’s status the OBC is responsible for switching its 
modes of operation [3]. It does so by implementing a 
software called the Flightplan on the Processing System 
(PS) which is part of the Zynq-7000 System on Chip (SoC) 
comprising of a dual-core Cortex A9 processor. The Zynq-
7000 SoC also contains an FPGA called the Programmable 
Logic (PL) on which a compression algorithm (CCSDS-
123.0-B-1) is implemented, which is used to compress the 
hyperspectral image obtained from the payload. This is 
essential in making the downlink of the image feasible. As 
part of the control and coordination, the OBC processor is 
interfaced with most of the sensors and actuators on board 
via I2C, SPI and GPIO interfaces. The OBC PS has a linux 
based operating system called Petalinux running on it, hence 
all hardware level interactions happen via Linux kernel 
drivers. In each mode there are various tasks which might 
have to be implemented, these tasks are often executed as 
processes under a multi-processing paradigm in according to 
the kernel scheduler. 
 
Telemetry & Telecommand (TTC) 

The TTC subsystem is responsible for encoding the data 
packets using AX.25 protocol and downlinking them during 
a ground station pass. In addition to the data, the TTC 
periodically also sends small packets of information 
containing basic parameter of the satellite like its battery 
condition and call sign, this is called the beacon. The former 
requires larger power and uses the GMSK communication 
modulation technique, while the latter requires very low 
power and uses On-Off keying. 
 
Attitude Determination & Control System (ADCS) 

The ADCS is responsible for for controlling the attitude of 
the satellite and pointing it in the right direction during 
payload execution and data downlinking. It is also 
responsible for implementing an orbit propagator to predict 
the orbit of the satellite. A major part of controlling the 
satellite’s attitude is the B-Dot detumbling algorithm which 
controls the angular velocity of the satellite and keeps it 
below a certain threshold. All the ADCS algorithms are 
executed on the PS of the OBC. Various sensors are a part 
of the ADCS to sense different parameters about the 
satellite. These are: 
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1) Three-Axis Inertial Measurement Unit: Used to 
sense the angular velocity and acceleration of the 
satellite. 

2) Three-Axis Magnetometer: To sense the Earth’s 
magnetic field around the satellite. 

3) Sun Sensors: To sense the position of the Sun as 
seen from the satellite. 

 
Based on the output of these algorithms, the amount of 
actuation required and the necessary action to provide that 
actuation is determined. The actuators, interfaced with the 
OBC,  in our satellite are: 
 

1) Magnetorquers: A combination of two torquer rods 
and a torquer coil, providing actuation in all three 
principal axes of the satellite. The torquers use the 
Earth’s magnetic field to control the orientation of 
the satellite. 

2) Reaction Wheels: Three individual wheels in the 
three principal axes of the satellite. The reaction 
wheels use their inertia to impact a control torque 
on the satellite.  

 
The B-Dot requires the readings from magnetometer and 
outputs the current to drive the magnetorquers. 
 
Electrical Power System (EPS) 

EPS forms the lifeline of the satellite, and is responsible for 
power generation, distribution and storage. It collects 
housekeeping data from voltage, current, and temperature 
sensors and sends the data to OBC upon request. It 
implements the Maximum Power Point Tracking (MPPT) to 
optimise power generation from the solar panels and also 
monitors health of other subsystems using Over Charge 
Protection Circuit (OCPC). 
 
Payload 

Our satellite features a hyperspectral camera as its primary 
payload. It is interfaced with OBC using Universal Serial 
Bus (USB) which is used to transmit control signals from 
OBC to the camera and receive the image. The image taking 
constitutes the most crucial part of the mission and requires 
stringent attitude control.  
  
Structure & Thermal System  

The elements of this subsystem constitute the satellite 
structure and various thermal control mechanisms 
distributed over the body of the satellite. Electronic 
components work in a specific temperature range and often 
a temperature outside these ranges causes a permanent 

damage to them. This subsystem’s role is vital in designing 
the structure to enhance satellite’s longevity. 
 

3. B-DOT ALGORITHM OVERVIEW 

The B-dot algorithm is used to control the satellite’s angular 
velocity due to its ease of implementation and easily 
measurable inputs. The on-board magnetometer measures 
the magnetic field vector in the body frame of the satellite. 
This magnetic field changes over time due to two reasons. 
The first is due to the satellite’s revolution around the earth 
which has a varying magnetic field around it. The second is 
due to the changing orientation of the satellite about its 
centre of mass. The rate of change of the former depends on 
the orbital elements of the satellite. The rate of change of 
the latter then depends on the rate at which the satellite is 
rotating about its own axis, that is, the angular velocity of 
the satellite.  
The change in magnetic field due to the satellite’s revolution 
around the earth is typically very small. Hence, the change 
in magnetic field measured by the onboard sensors 
themselves provide a good indicator for the angular rotation. 
When the sampling time between two measurements is 
taken into account and the change in magnetic field is 
divided by it, we get a good indicator for the angular 
velocity. Hence, Ḃ becomes a good indicator for the angular 
velocity of the satellite, a small value of the B-dot means 
that the satellite is rotating slowly, and a large value means 
it is rotating fast.  
Based on this observation the control mechanism takes two 
consecutive readings of the magnetometer and then divides 
it by the sampling time to get B-dot. This B-dot is then 
multiplied by a constant value [5] to obtain the necessary 
opposing torque required to counter the angular velocity. 
Based on the properties of the actuator (magnetorquer in our 
case), the torque value can be used to determine the current 
that needs to be provided to the Magnetorquers. This 
process of sampling the magnetic field and consequently 
calculating the required torque and supplying the necessary 
current is performed iteratively till the angular velocity goes 
below a pre-decided critical level. 

 
4. INTERACTION BETWEEN ADCS 

AND OBC WHILE RUNNING B-DOT 

As discussed earlier the B-Dot algorithm is running, like all 
other ADCS algorithms, is getting executed on the OBCs 
processing system. The purpose of the B-Dot algorithm is to 
detumble the satellite, and like any other control algorithm it 
is implemented continuously, with each iterations separated 
by a regular interval of time. In normal modes of operation, 
i.e. when the satellite is not tumbling, B-Dot is always 
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running in the background at a lower frequency. However, 
when the angular velocity drops below a certain critical 
threshold the entire focus of the OBC shifts towards 
implementing iterations of the B-Dot algorithm. When in 
this state, the satellite is said to be in detumbling mode, in 
which iterations of the algorithm are performed at a high 
frequency. In one iteration (say kth) of the B-dot algorithm 
the following interactions need to take place between the 
OBC processing system and the ADCS components: 
 

1) The magnetic field values in x,y and z directions 
i.e. Bx(k), By(k) and Bz(k) are obtained from the 
magnetometer in iteration k. This is done via the 
I2C bus which is used for interfacing between the 
PS and the magnetometer. As mentioned in the 
explanation about OBC, the interaction takes place 
via the I2C driver subsystem which is part of the 
Linux kernel. 

2) Based on values obtained in the previous iteration 
i.e. Bx(k-1), By(k-1) and Bz(k-1) and the the 
samping time between two continuous iterations, 
the value of B-dot is calculated for all three axes. 

3) The value of B-dot in all three axes is multiplied by 
the constants of the three axes which then gives us 
the required counter torque to be provided along 
each axis. 

4) Based on known information about the 
magnetorquers and the torque along each axis we 
are able to calculate the required current value to 
be provided to the magnetorquers in the x, y and z 
direction respectively. 

5) The zedboard has a maximum output current of a 
few milli ampere at most but the current to be 
provided will be in the range of amperes. To 
counter this, corresponding to each current value a 
PWM wave is generated, where the width is 
depends on the current value. Each PWM wave is 
fed into a separate driver circuit which is then able 
to provide the necessary current to the 
corresponding magnetorquer with help from the 
EPS. 

 

5. OBC CONTROL AND DATA FLOW 

ARCHITECTURE 

The Linux operating system is responsible for managing 
hardware resources and their allocation to software 
applications [Linux Ref]. It is bifurcated into two parts- 
user space and kernel space. The Linux kernel space 
comprises of subsystems, each subsystem managing a 
particular family of hardware and acting as an intermediate 

layer between the higher level user space applications and 
hardware modules. These subsystems are composed of 
various drivers which are a software service managing the 
hardware directly. The device drivers are organised as 
controller and slave drivers for a hardware bus. The 
controller drivers directly issue a call to the bus controllers 
which can communicate with the slave devices through the 
bus protocol. Each slave device is represented by a driver 
which in turn generates requests to the controller driver for 
any communication with the device. The hardware can only 
be directly accessed by these drivers such that any user 
space application requiring access to the hardware generates 
a request called trap to the kernel. Each trap is associated 
with a particular code in the kernel space. Whenever the 
kernels receives a trap, it transfers the flow of control to the 
associated device driver. This device driver based on the 
privilege level of the user space application (i.e. the 
permission to use a particular device) can respond to this 
request in two ways- if the user space application doesn’t 
have the permission for requested access, the driver raises 
an exception to the processor which results in the 
termination of the user space application. In case the user 
space has permission for the access, the device driver 
generates a request to the controller driver which translates 
this software call to hardware. This procedure of translating 
software call to hardware introduces a latency between the 
request by the user space application and actual hardware 
operation.  
 
The user space applications run in the context of an 
abstraction called process. Each process runs in its own 
allocated memory. The kernel, through a service called 
scheduler, is responsible for distributing the CPU time to 
each process. This distribution of CPU time is called 
scheduling of the processes. The processes do not run in an 
atomic context and could be interrupted in between their 
execution by the scheduler, which can then allocate the CPU 
to another process before current process’s completion. In 
presence of multiple processes, the scheduler can prolong 
the time in which a process completes its task, thus inducing 
a latency.  
 
The onboard software is divided into various processes with 
each process handling a specific task. The B-dot control 
algorithm which is one of these processes, requires access to 
the magnetometers through the I2C bus and generates a 
PWM signal through  a GPIO. Its execution thus incurs 
delay introduced by the scheduler and also the delay due to 
hardware access through the I2C and GPIO controller via 
their drivers. The effect of this latency is an important part 
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of this simulation method to analyse the efficacy of the B-
dot control mechanism. 

 

6. SIMULATION ARCHITECTURE 

The verification and validation of functional integrity of the 
onboard hardware and software is crucial since they have to 
operate without any human intervention to correct them. 
Hence procedures have to be developed to assist in the 
design process of the satellites, with the objective of 
assessing the correctness of intended operation. The latency 
of response by the system to an external trigger is an 
important parameter which needs to be verified before 
launch. In our system our primary purpose is to test the 
interfaces that the Zedboard uses to interact with the ADCS 
components and the latency that gets introduced due to the 
bus speed and multi-processing system in place. With this 
purpose in mind, we don’t make any changes to the code 
running on the Zedboard, this means that the flow from the 
software application layer running on top of the OS via the 
driver layer and the hardware controller and bus are all as 
they would be on the actual satellite. However, we are posed 
with the following problems for the other parts of the 
system: 
 

1) On board the satellite the magnetometers provide 
the magnetic field values which are as expected in 
the actual orbit. 

2) On the ground these values are only available using 
simulations of orbit propagators run on softwares 
like MATLAB. 

3) But it is not sufficient to have the values and 
supply them to the Zedboard, it is also important to 
use the right interface so that the Zedboard system 
needs not be changed. 

 
The simulation setup described below helps us solve these 
problems simultaneously. 
 

7. SIMULATION COMPONENTS 

The setup consists of a computer running MATLAB 
simulations of the orbit on it, two Arduinos, a ZedBoard and 
a DC-DC converter. The Arduinos and ZedBoard are 
connected through serial ports to the computer. One 
Arduino has an I2C connection with the ZedBoard to 
replicate the connection between magnetometer and 
microprocessor on the satellite. The output PWM wave of 
the ZedBoard is sent as input to the DC-DC converter via 
GPIO pins and the output of the DC-DC converter is 
connected to the analog input pins of second arduino. 

The following paragraphs indicate the role of various 
components used in the simulation: 
 
Computer Running MATLAB 

A detailed MATLAB model has been developed to simulate 
the complete kinematic and dynamic working of the satellite 
once deployed in orbit. It consists of ten modules, where 
each module models various aspects of the satellite when in 
orbit like forces acting on it, rotation of the satellite around 
its centre of mass, path of satellite in space, etc.  
During each iteration, some of the state parameters which 
are calculated are: 

● Position vector 
● Velocity vector 
● Latitude and longitude 
● Angle rotated by satellite since start of simulation 
● Angular velocity 
● Moment of Inertia 
● Torque acting on the satellite 
● Magnetic field at the position vector 
● Control torque to be produced 

The simulation also includes a model of the magnetorquer, 
upon receiving the value of current that is given as input to 
the magnetorquer, the model is able to give the value of the 
corresponding torque which gets generated. This torque then 
gets used to calculate the new state of the satellite 
determined by the state parameters given above. 
 
Arduino 1 

The sole function of Arduino 1 is to provide an I2C 
interface with the ZedBoard and act as I2C slave, thereby 
modelling the magnetometer. Whenever ZedBoard requests 
for data via I2C bus, the Arduino 1 writes a byte to 
MATLAB to notify that it has to send data to Arduino 1. 
This is done via a serial port interface. The MATLAB 
simulation then obtains the most recent values of magnetic 
field in the three directions and sends it to Arduino 1 via the 
serial interface. Arduino 1 then writes these values to the 
ZedBoard via the I2C interface.  
 
ZedBoard 

The ZedBoard is used as it would onboard the satellite. That 
is, it also acts as an I2C master for Arduino 1 and requests 
magnetic field data from it using the actual I2C driver used 
to interface with the magnetometer. After receiving data 
from the Arduino 1, the ZedBoard first converts the data 
from bytes to float. It then runs one iteration of the B-Dot 
algorithm and outputs the PWM wave required to generate 
the current value. 
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DC-DC converter 

Arduinos cannot take in large values of current, so to make 
the Arduino 2 understand the value of the current in order to 
simulate the magnetorquer, we have used a buck DC-DC 
converter. One input of the DC-DC converter is fixed at 3.3 
V. The MOSFET switch is powered by the PWM generated 
by the zedboard. As per the standard operation of the DC-
DC converter, it produces an output voltage of Vo = 3.3D, 
where D is the width of the PWM wave between 0 and 1. 
This analog voltage can then be sensed by Arduino 2. 
 
 

 

 

Arduino 2  

This arduino models the magnetorquers. The analog pins 
therein are connected to the output of the DC-DC converter 
and the serial port is connected to the computer. It reads the 
analog signal and converts it back to the PWM width. Based 
on the PWM width it is able to calculate the current that the 
onboard driver circuit would have generated.  Upon making 
sure that Arduino 1 has received the previous values, 
Arduino 2 sends the current value to MATLAB via the 
serial port. It keeps on averaging the values incoming from 
analog signal until they are to be sent to MATLAB. 

Figure 1 describes the simulation setup devised in 
order to test the working of B-Dot algorithm (along one 
axis) on the OBC PS  using actual interfaces as in the 
satellite. 

 

Figure 1. Block Diagram of Simulation setup 
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8. SIMULATION DATAFLOW 

The sequence diagram in figure 2 tells us flow of control 
and data in the simulation system: 
 

1. The Satellite Simulator starts running in 
MATLAB. It first initializes the various state 
parameters. Using a MATLAB function, the 
simulator loops till data is available on the serial 
port. 

2. Meanwhile the ZedBoard also starts running its 
code by initializing the flightplan. 

3. After initializing, the first section of the code 
running on the zedboard generates a request for the 
magnetometer values via I2C. 

4. Upon receiving the request, Arduino 1 notifies the 
Satellite Simulator that it needs the magnetic field 
value, by writing a byte to the serial interface 
between itself and the computer.  

5. Upon receiving the signal from Arduino 1, the 
Satellite Simulator exits the loop shown in point 1, 
obtains the magnetic field values from the orbit 
propagator, converts them to an appropriate data 
type. 

6. The magnetic field value is sent to Arduino 1 via 
the serial port. After sending the magnetic field 
value to Arduino 1 a pause of 0.1 second is 
introduced, this is expected to be enough time for 
the voltage at the output of the DC-DC converter to 

get updated. After the pause a signal is sent to 
Arduino 2 telling it to send the analog value it 
reads to the computer via the serial port. In those 
0.1 second steps 7 - 12 are expected to occur. 

7. Arduino 1 then writes the value to ZedBoard via 
the I2C interface, which had been implicitly 
waiting for a response from its I2C slave. (due to 
the blocking nature of IO calls) 

8. On receiving the value, the ZedBoard runs one 
iteration of the B-Dot algorithm, this basically 
involves taking the difference between the value of 
magnetic field received now and that received in 
the previous iteration which had been stored. The 
difference is then divided by the sampling time 
which is one second. The value of B-dot is then 
multiplied by a predetermined fixed constant [5] to 
find the torque value. 

9. The torque value is used along with the 
magnetorquer model to generate the value of 
current to be supplied to the magnetorquer. 

10. A PWM wave based on the value of current is then 
generated by the ZedBoard through the GPIO port. 

11. The PWM wave is given as input to a DC-DC 
converter which generates an output voltage Vo= 
3.3D, where D is the the width of PWM. 

12. Arduino 2 reads this analog value, based on which 
it is able to determine the width of the PWM wave. 
Based on this width it is able to determine the 
current value which would have been given by the 

Figure 2. UML diagram depicting the flow of simulation 
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driver circuit onboard. That current value is sent as 
input to the computer via the serial port to be used 
in the MATLAB code. 

13. The actuator model in the MATLAB code uses this 
current value to determine the value of torque 
which would get generated. Using the value of 
torque and a sampling time of 1 second the new 
values of position, velocity, magnetic field, etc. are 
calculated and the simulator returns to the 
beginning of the loop, spin waiting for Arduino_1 
to send signal to send the new magnetic field value. 

 

 9. FUTURE WORK  

To test the latency introduced by multi-processing paradigm 
the different functionalities/modes of operation of the 
satellite which form part of the Flightplan can be integrated 
along with this simulation. Further, instead of taking the 
constant sampling time of 1 second, we can make the 
sampling time variable by measuring the time between two 
consecutive iterations, allowing us to get more accurate 
results. To further inculcate real hardware we could add 
more Arduinos to simulate various sensors to be interfaced. 
More complicated tasks like the processes involved in 
uplinking can also be simulated by using one of the 
Arduinos as a receiver emulator.[2] 
 

 APPENDICES  

A.  ARDUINO 1 CODE 

#include <Wire.h> 
#define SLAVE_ADDRESS 0x1E 
 
byte B[4]={0}; 
 
void setup() { 
  Serial.begin(9600); 
  Wire.begin(SLAVE_ADDRESS); 
} 
 
void loop() { 
    Wire.onRequest(requestEvent);  
} 
 
void requestEvent() 
{ 
  Serial.write(10); 
   
  if(Serial.available()>0) 
  { 
    Serial.readBytes(B,4);  
  } 
   Wire.write(B,4);  
} 

B.  ARDUINO 2 CODE 

byte* current_bytes; 
float voltage = 0.0; 
float current = 0.0; 
 
#define RESISTANCE0 344.3234 
int count = 1, number = 1; 
 
void setup() { 
  Serial.begin(9600); 
} 
 
void loop() { 
  if (Serial.read()==5) 
  { 
    voltage = voltage / number; 
    current = voltage / RESISTANCE0; 
     
    current_bytes = (byte *)&current; 
    Serial.write(current_bytes, 4); 
   
    voltage = 0.0; 
  } 
  else 
  { 
    voltage = voltage + (analogRead(A0) 
- analogRead(A1)) * 5.0 / 1023.0; 
    number++; 
  } 
  count++; 
} 
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C. MATLAB PARTIAL LOOP 

while arduino.BytesAvailable == 0 
end     
                      
flushinput(arduino1); 
          
Field_X = 
single(Mag_Field_Body(1,Counter)) 
          
MField_X = typecast(Field_X,'uint8');          
 
fwrite(arduino1,MField_X,'uint8'); 
    
pause(0.1); 
          
fwrite(arduino2,5); 
          
pause(0.5); 
          
temp = fread(arduino2,4,'uint8');         
          
flushinput(arduino2); 
 
current=typecast(uint8(temp),'single') 
          
Current_Magnetorquer_BDot(:,Counter) = 
0; 
         
Current_Magnetorquer_BDot(1,Counter) = 
current; 
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