
 978-1-5386-6854-2/19/$31.00 ©2019 IEEE
 1

In-Loop Simulation of Attitude Control of a Nanosatellite

Vatsal Jignesh Badami
Birla Institute of Technology and

Science, Pilani
Rajasthan, India - 333031
vatsaljb.007@gmail.com

Tushar Goyal

Birla Institute of Technology and
Science, Pilani

Rajasthan, India - 333031
tushargoyal21@gmail.com

Abstract—Team Anant is a group of undergraduate students at
the Birla Institute of Technology and Science, Pilani, working
on the design and development of a 3U CubeSat. The proposed
3U CubeSat features a hyperspectral camera as its payload
which requires stringent control maneuvers for imaging and
generates a large amount of data. The On-Board Computer
features a Zynq-7000 SoC consisting of two ARM Cortex A9
cores (PS) and a field programmable gate array (PL) on the
same silicon. The PL is responsible for implementing a
hyperspectral image compression algorithm while the PS is
responsible for housekeeping and running attitude control and
determination algorithms among other tasks. Verification of
the design is a critical step in the development of a
nanosatellite. Conventional in-loop simulations use testbeds as
a means of simulating the space environment to verify the
functional integrity of developed modules. In this paper, a
simulation scheme is discussed which replaces some of the
hardware test beds with satellite models running on a
computer which allows reduced dependence on the attitude
and control subsystem (ADCS). The simulation is done in
order to test the functioning of the attitude control algorithm,
with as much resemblance to the actual nanosatellite as
possible and with minimum budget. The loop comprises of two
Arduinos, Zedboard (an evaluation board for Zynq), DC-DC
converter and satellite models running on a computer. One of
the Arduinos is used to emulate the magnetometer which
senses the magnetic field in space. The satellite simulator
running on the computer sends the information to this
Arduino, which is interfaced to the Zedboard via an I2C
interface. The B-dot algorithm running on the Zedboard is
used to calculate the required actuation and generates a PWM
wave accordingly. This PWM wave is given as an input to a
DC-DC converter which gives an analog voltage based on the
width of the PWM wave. The other Arduino is used to emulate
the actuator which takes an input from the converter circuit.
This voltage is converted to current and sent to the actuator
model running on the computer to determine the generated
torque and hence its effect on the satellite is calculated, thus
completing the feedback loop. Although the paper focuses on
detumbling using B-dot, it can be generalized to the simulation
of any subsystem of the satellite and can be used as a first step
in the functional verification.

TABLE OF CONTENTS

1. INTRODUCTION……………………………….. 1
2. SATELLITE ARCHITECTURE……………….. 2
3. B-DOT ALGORITHM OVERVIEW……………3
4. INTERACTION BETWEEN OBC AND ADCS.. 3
5. OBC CONTROL AND DATAFLOW

ARCHITECTURE…………………………………..4
6. SIMULATION ARCHITECTURE……………...5
7. SIMULATION COMPONENTS……………….. 5
8. SIMULATION DATAFLOW…………………... 7
9. FUTURE WORK…………………………………8
APPENDICES……………………………………….8
A. A88
B. 88
C. MATLAB PARTIAL LOOP………………….... 9
ACKNOWLEDGEMENTS………………………... 9
REFERENCES……………………………………... 9
BIOGRAPHY………………………………………10

1. INTRODUCTION

The miniaturization of the satellites in the form of CubeSat
platform provides a low cost alternative for space agencies
to test new technologies as well as students and amateur
scientists to gather experience in the field of aerospace
engineering. CubeSats have gained much attention in the
past few years due to their ease of development, lesser lead
time and manufacturing cost in comparison to bigger
satellites.

Team Anant, a student satellite team at BITS, Pilani is
working on the development of a 3U CubeSat with a
hyperspectral imager. The satellite can be classified into six

Saurabh Manish Raje

Birla Institute of Technology and
Science, Pilani

Rajasthan, India - 333031
f2015045@pilani.bits-pilani.ac.in

Kushagra Aggarwal

Birla Institute of Technology and
Science, Pilani

Rajasthan, India - 333031
kushagra.aggarwal01@gmail.com

Shubham Sharma
Birla Institute of Technology and

Science, Pilani
Rajasthan, India - 333031

shubhamsh695@gmail.com

2

subsystems viz. Onboard Computer (OBC), Telemetry &
Telecommand (TTC), Attitude Determination & Control
System (ADCS), Electrical Power System (EPS), Payload,
and Structure and Thermal Systems [2].

The testing and verification of onboard software and
satellite components for CubeSats still heavily relies on pre-
existing test beds which have high procurement costs, often
limiting the development process for budget restricted
student teams [1]. Alternatively, entirely software based
testing can be carried out having its own limitations like
integration testing of various hardware drivers and
interfaces becomes difficult. Further, the latency added by
the interfaces used, especially if many sensors are connected
on the same bus, becomes harder to measure in purely
software based testing.

Satellite detumbling is a critical process that requires real-
time capabilities and high performance from the OBC. This
process decreases the angular velocity of the satellite to
below a certain threshold. It forms an important part of any
CubeSat mission requiring active control because a
tumbling satellite has diminished power generation
capability and increased the latency in pointing the satellite
for certain tasks like data downlinking and remote sensing.
In a centralized architecture (as the one proposed by the
authors), it is possible that the ADCS control algorithms
might be implemented on the OBC. This results in a huge
interdependency between the OBC and ADCS. Given the
importance of a low latency, high-throughput response from
the processor during the control process (to achieve a
predefined time to convergence), a rigorous methodology
for a ground-test and evaluation is mandated. Conventional
testing procedures employ hardware test beds comprising of
air bearing and helmholtz-cage based magnetic field
simulators [4]. This paper presents a novel hybrid hardware-
software approach devised by the authors for testing the
control algorithms that are employed onboard. This method
allows us to test the latency of the processor and the
interfaces used, however, it does not require building an
actual hardware to simulate the space environment and the
sensors/actuators.

2. SATELLITE ARCHITECTURE

Our satellite’s functioning has been divided into six
subsystems or modules. The functioning of these modules is
distributed in a mutually exclusive and exhaustive way,
covering all the aspects of satellite’s mission and
maintenance [2]. The functioning of these subsystems is

interdependent. A brief description of the subsystems and
their tasks is given below:

Onboard Computer (OBC)

The OBC controls, coordinates and monitors the functioning
of the other subsystems of the satellite. Based on the
satellite’s status the OBC is responsible for switching its
modes of operation [3]. It does so by implementing a
software called the Flightplan on the Processing System
(PS) which is part of the Zynq-7000 System on Chip (SoC)
comprising of a dual-core Cortex A9 processor. The Zynq-
7000 SoC also contains an FPGA called the Programmable
Logic (PL) on which a compression algorithm (CCSDS-
123.0-B-1) is implemented, which is used to compress the
hyperspectral image obtained from the payload. This is
essential in making the downlink of the image feasible. As
part of the control and coordination, the OBC processor is
interfaced with most of the sensors and actuators on board
via I2C, SPI and GPIO interfaces. The OBC PS has a linux
based operating system called Petalinux running on it, hence
all hardware level interactions happen via Linux kernel
drivers. In each mode there are various tasks which might
have to be implemented, these tasks are often executed as
processes under a multi-processing paradigm in according to
the kernel scheduler.

Telemetry & Telecommand (TTC)

The TTC subsystem is responsible for encoding the data
packets using AX.25 protocol and downlinking them during
a ground station pass. In addition to the data, the TTC
periodically also sends small packets of information
containing basic parameter of the satellite like its battery
condition and call sign, this is called the beacon. The former
requires larger power and uses the GMSK communication
modulation technique, while the latter requires very low
power and uses On-Off keying.

Attitude Determination & Control System (ADCS)

The ADCS is responsible for for controlling the attitude of
the satellite and pointing it in the right direction during
payload execution and data downlinking. It is also
responsible for implementing an orbit propagator to predict
the orbit of the satellite. A major part of controlling the
satellite’s attitude is the B-Dot detumbling algorithm which
controls the angular velocity of the satellite and keeps it
below a certain threshold. All the ADCS algorithms are
executed on the PS of the OBC. Various sensors are a part
of the ADCS to sense different parameters about the
satellite. These are:

3

1) Three-Axis Inertial Measurement Unit: Used to
sense the angular velocity and acceleration of the
satellite.

2) Three-Axis Magnetometer: To sense the Earth’s
magnetic field around the satellite.

3) Sun Sensors: To sense the position of the Sun as
seen from the satellite.

Based on the output of these algorithms, the amount of
actuation required and the necessary action to provide that
actuation is determined. The actuators, interfaced with the
OBC, in our satellite are:

1) Magnetorquers: A combination of two torquer rods
and a torquer coil, providing actuation in all three
principal axes of the satellite. The torquers use the
Earth’s magnetic field to control the orientation of
the satellite.

2) Reaction Wheels: Three individual wheels in the
three principal axes of the satellite. The reaction
wheels use their inertia to impact a control torque
on the satellite.

The B-Dot requires the readings from magnetometer and
outputs the current to drive the magnetorquers.

Electrical Power System (EPS)

EPS forms the lifeline of the satellite, and is responsible for
power generation, distribution and storage. It collects
housekeeping data from voltage, current, and temperature
sensors and sends the data to OBC upon request. It
implements the Maximum Power Point Tracking (MPPT) to
optimise power generation from the solar panels and also
monitors health of other subsystems using Over Charge
Protection Circuit (OCPC).

Payload

Our satellite features a hyperspectral camera as its primary
payload. It is interfaced with OBC using Universal Serial
Bus (USB) which is used to transmit control signals from
OBC to the camera and receive the image. The image taking
constitutes the most crucial part of the mission and requires
stringent attitude control.

Structure & Thermal System

The elements of this subsystem constitute the satellite
structure and various thermal control mechanisms
distributed over the body of the satellite. Electronic
components work in a specific temperature range and often
a temperature outside these ranges causes a permanent

damage to them. This subsystem’s role is vital in designing
the structure to enhance satellite’s longevity.

3. B-DOT ALGORITHM OVERVIEW

The B-dot algorithm is used to control the satellite’s angular
velocity due to its ease of implementation and easily
measurable inputs. The on-board magnetometer measures
the magnetic field vector in the body frame of the satellite.
This magnetic field changes over time due to two reasons.
The first is due to the satellite’s revolution around the earth
which has a varying magnetic field around it. The second is
due to the changing orientation of the satellite about its
centre of mass. The rate of change of the former depends on
the orbital elements of the satellite. The rate of change of
the latter then depends on the rate at which the satellite is
rotating about its own axis, that is, the angular velocity of
the satellite.
The change in magnetic field due to the satellite’s revolution
around the earth is typically very small. Hence, the change
in magnetic field measured by the onboard sensors
themselves provide a good indicator for the angular rotation.
When the sampling time between two measurements is
taken into account and the change in magnetic field is
divided by it, we get a good indicator for the angular
velocity. Hence, Ḃ becomes a good indicator for the angular
velocity of the satellite, a small value of the B-dot means
that the satellite is rotating slowly, and a large value means
it is rotating fast.
Based on this observation the control mechanism takes two
consecutive readings of the magnetometer and then divides
it by the sampling time to get B-dot. This B-dot is then
multiplied by a constant value [5] to obtain the necessary
opposing torque required to counter the angular velocity.
Based on the properties of the actuator (magnetorquer in our
case), the torque value can be used to determine the current
that needs to be provided to the Magnetorquers. This
process of sampling the magnetic field and consequently
calculating the required torque and supplying the necessary
current is performed iteratively till the angular velocity goes
below a pre-decided critical level.

4. INTERACTION BETWEEN ADCS

AND OBC WHILE RUNNING B-DOT

As discussed earlier the B-Dot algorithm is running, like all
other ADCS algorithms, is getting executed on the OBCs
processing system. The purpose of the B-Dot algorithm is to
detumble the satellite, and like any other control algorithm it
is implemented continuously, with each iterations separated
by a regular interval of time. In normal modes of operation,
i.e. when the satellite is not tumbling, B-Dot is always

4

running in the background at a lower frequency. However,
when the angular velocity drops below a certain critical
threshold the entire focus of the OBC shifts towards
implementing iterations of the B-Dot algorithm. When in
this state, the satellite is said to be in detumbling mode, in
which iterations of the algorithm are performed at a high
frequency. In one iteration (say kth) of the B-dot algorithm
the following interactions need to take place between the
OBC processing system and the ADCS components:

1) The magnetic field values in x,y and z directions
i.e. Bx(k), By(k) and Bz(k) are obtained from the
magnetometer in iteration k. This is done via the
I2C bus which is used for interfacing between the
PS and the magnetometer. As mentioned in the
explanation about OBC, the interaction takes place
via the I2C driver subsystem which is part of the
Linux kernel.

2) Based on values obtained in the previous iteration
i.e. Bx(k-1), By(k-1) and Bz(k-1) and the the
samping time between two continuous iterations,
the value of B-dot is calculated for all three axes.

3) The value of B-dot in all three axes is multiplied by
the constants of the three axes which then gives us
the required counter torque to be provided along
each axis.

4) Based on known information about the
magnetorquers and the torque along each axis we
are able to calculate the required current value to
be provided to the magnetorquers in the x, y and z
direction respectively.

5) The zedboard has a maximum output current of a
few milli ampere at most but the current to be
provided will be in the range of amperes. To
counter this, corresponding to each current value a
PWM wave is generated, where the width is
depends on the current value. Each PWM wave is
fed into a separate driver circuit which is then able
to provide the necessary current to the
corresponding magnetorquer with help from the
EPS.

5. OBC CONTROL AND DATA FLOW

ARCHITECTURE

The Linux operating system is responsible for managing
hardware resources and their allocation to software
applications [Linux Ref]. It is bifurcated into two parts-
user space and kernel space. The Linux kernel space
comprises of subsystems, each subsystem managing a
particular family of hardware and acting as an intermediate

layer between the higher level user space applications and
hardware modules. These subsystems are composed of
various drivers which are a software service managing the
hardware directly. The device drivers are organised as
controller and slave drivers for a hardware bus. The
controller drivers directly issue a call to the bus controllers
which can communicate with the slave devices through the
bus protocol. Each slave device is represented by a driver
which in turn generates requests to the controller driver for
any communication with the device. The hardware can only
be directly accessed by these drivers such that any user
space application requiring access to the hardware generates
a request called trap to the kernel. Each trap is associated
with a particular code in the kernel space. Whenever the
kernels receives a trap, it transfers the flow of control to the
associated device driver. This device driver based on the
privilege level of the user space application (i.e. the
permission to use a particular device) can respond to this
request in two ways- if the user space application doesn’t
have the permission for requested access, the driver raises
an exception to the processor which results in the
termination of the user space application. In case the user
space has permission for the access, the device driver
generates a request to the controller driver which translates
this software call to hardware. This procedure of translating
software call to hardware introduces a latency between the
request by the user space application and actual hardware
operation.

The user space applications run in the context of an
abstraction called process. Each process runs in its own
allocated memory. The kernel, through a service called
scheduler, is responsible for distributing the CPU time to
each process. This distribution of CPU time is called
scheduling of the processes. The processes do not run in an
atomic context and could be interrupted in between their
execution by the scheduler, which can then allocate the CPU
to another process before current process’s completion. In
presence of multiple processes, the scheduler can prolong
the time in which a process completes its task, thus inducing
a latency.

The onboard software is divided into various processes with
each process handling a specific task. The B-dot control
algorithm which is one of these processes, requires access to
the magnetometers through the I2C bus and generates a
PWM signal through a GPIO. Its execution thus incurs
delay introduced by the scheduler and also the delay due to
hardware access through the I2C and GPIO controller via
their drivers. The effect of this latency is an important part

5

of this simulation method to analyse the efficacy of the B-
dot control mechanism.

6. SIMULATION ARCHITECTURE

The verification and validation of functional integrity of the
onboard hardware and software is crucial since they have to
operate without any human intervention to correct them.
Hence procedures have to be developed to assist in the
design process of the satellites, with the objective of
assessing the correctness of intended operation. The latency
of response by the system to an external trigger is an
important parameter which needs to be verified before
launch. In our system our primary purpose is to test the
interfaces that the Zedboard uses to interact with the ADCS
components and the latency that gets introduced due to the
bus speed and multi-processing system in place. With this
purpose in mind, we don’t make any changes to the code
running on the Zedboard, this means that the flow from the
software application layer running on top of the OS via the
driver layer and the hardware controller and bus are all as
they would be on the actual satellite. However, we are posed
with the following problems for the other parts of the
system:

1) On board the satellite the magnetometers provide
the magnetic field values which are as expected in
the actual orbit.

2) On the ground these values are only available using
simulations of orbit propagators run on softwares
like MATLAB.

3) But it is not sufficient to have the values and
supply them to the Zedboard, it is also important to
use the right interface so that the Zedboard system
needs not be changed.

The simulation setup described below helps us solve these
problems simultaneously.

7. SIMULATION COMPONENTS

The setup consists of a computer running MATLAB
simulations of the orbit on it, two Arduinos, a ZedBoard and
a DC-DC converter. The Arduinos and ZedBoard are
connected through serial ports to the computer. One
Arduino has an I2C connection with the ZedBoard to
replicate the connection between magnetometer and
microprocessor on the satellite. The output PWM wave of
the ZedBoard is sent as input to the DC-DC converter via
GPIO pins and the output of the DC-DC converter is
connected to the analog input pins of second arduino.

The following paragraphs indicate the role of various
components used in the simulation:

Computer Running MATLAB

A detailed MATLAB model has been developed to simulate
the complete kinematic and dynamic working of the satellite
once deployed in orbit. It consists of ten modules, where
each module models various aspects of the satellite when in
orbit like forces acting on it, rotation of the satellite around
its centre of mass, path of satellite in space, etc.
During each iteration, some of the state parameters which
are calculated are:

● Position vector
● Velocity vector
● Latitude and longitude
● Angle rotated by satellite since start of simulation
● Angular velocity
● Moment of Inertia
● Torque acting on the satellite
● Magnetic field at the position vector
● Control torque to be produced

The simulation also includes a model of the magnetorquer,
upon receiving the value of current that is given as input to
the magnetorquer, the model is able to give the value of the
corresponding torque which gets generated. This torque then
gets used to calculate the new state of the satellite
determined by the state parameters given above.

Arduino 1

The sole function of Arduino 1 is to provide an I2C
interface with the ZedBoard and act as I2C slave, thereby
modelling the magnetometer. Whenever ZedBoard requests
for data via I2C bus, the Arduino 1 writes a byte to
MATLAB to notify that it has to send data to Arduino 1.
This is done via a serial port interface. The MATLAB
simulation then obtains the most recent values of magnetic
field in the three directions and sends it to Arduino 1 via the
serial interface. Arduino 1 then writes these values to the
ZedBoard via the I2C interface.

ZedBoard

The ZedBoard is used as it would onboard the satellite. That
is, it also acts as an I2C master for Arduino 1 and requests
magnetic field data from it using the actual I2C driver used
to interface with the magnetometer. After receiving data
from the Arduino 1, the ZedBoard first converts the data
from bytes to float. It then runs one iteration of the B-Dot
algorithm and outputs the PWM wave required to generate
the current value.

6

DC-DC converter

Arduinos cannot take in large values of current, so to make
the Arduino 2 understand the value of the current in order to
simulate the magnetorquer, we have used a buck DC-DC
converter. One input of the DC-DC converter is fixed at 3.3
V. The MOSFET switch is powered by the PWM generated
by the zedboard. As per the standard operation of the DC-
DC converter, it produces an output voltage of Vo = 3.3D,
where D is the width of the PWM wave between 0 and 1.
This analog voltage can then be sensed by Arduino 2.

Arduino 2

This arduino models the magnetorquers. The analog pins
therein are connected to the output of the DC-DC converter
and the serial port is connected to the computer. It reads the
analog signal and converts it back to the PWM width. Based
on the PWM width it is able to calculate the current that the
onboard driver circuit would have generated. Upon making
sure that Arduino 1 has received the previous values,
Arduino 2 sends the current value to MATLAB via the
serial port. It keeps on averaging the values incoming from
analog signal until they are to be sent to MATLAB.

Figure 1 describes the simulation setup devised in
order to test the working of B-Dot algorithm (along one
axis) on the OBC PS using actual interfaces as in the
satellite.

Figure 1. Block Diagram of Simulation setup

7

8. SIMULATION DATAFLOW

The sequence diagram in figure 2 tells us flow of control
and data in the simulation system:

1. The Satellite Simulator starts running in
MATLAB. It first initializes the various state
parameters. Using a MATLAB function, the
simulator loops till data is available on the serial
port.

2. Meanwhile the ZedBoard also starts running its
code by initializing the flightplan.

3. After initializing, the first section of the code
running on the zedboard generates a request for the
magnetometer values via I2C.

4. Upon receiving the request, Arduino 1 notifies the
Satellite Simulator that it needs the magnetic field
value, by writing a byte to the serial interface
between itself and the computer.

5. Upon receiving the signal from Arduino 1, the
Satellite Simulator exits the loop shown in point 1,
obtains the magnetic field values from the orbit
propagator, converts them to an appropriate data
type.

6. The magnetic field value is sent to Arduino 1 via
the serial port. After sending the magnetic field
value to Arduino 1 a pause of 0.1 second is
introduced, this is expected to be enough time for
the voltage at the output of the DC-DC converter to

get updated. After the pause a signal is sent to
Arduino 2 telling it to send the analog value it
reads to the computer via the serial port. In those
0.1 second steps 7 - 12 are expected to occur.

7. Arduino 1 then writes the value to ZedBoard via
the I2C interface, which had been implicitly
waiting for a response from its I2C slave. (due to
the blocking nature of IO calls)

8. On receiving the value, the ZedBoard runs one
iteration of the B-Dot algorithm, this basically
involves taking the difference between the value of
magnetic field received now and that received in
the previous iteration which had been stored. The
difference is then divided by the sampling time
which is one second. The value of B-dot is then
multiplied by a predetermined fixed constant [5] to
find the torque value.

9. The torque value is used along with the
magnetorquer model to generate the value of
current to be supplied to the magnetorquer.

10. A PWM wave based on the value of current is then
generated by the ZedBoard through the GPIO port.

11. The PWM wave is given as input to a DC-DC
converter which generates an output voltage Vo=
3.3D, where D is the the width of PWM.

12. Arduino 2 reads this analog value, based on which
it is able to determine the width of the PWM wave.
Based on this width it is able to determine the
current value which would have been given by the

Figure 2. UML diagram depicting the flow of simulation

8

driver circuit onboard. That current value is sent as
input to the computer via the serial port to be used
in the MATLAB code.

13. The actuator model in the MATLAB code uses this
current value to determine the value of torque
which would get generated. Using the value of
torque and a sampling time of 1 second the new
values of position, velocity, magnetic field, etc. are
calculated and the simulator returns to the
beginning of the loop, spin waiting for Arduino_1
to send signal to send the new magnetic field value.

 9. FUTURE WORK

To test the latency introduced by multi-processing paradigm
the different functionalities/modes of operation of the
satellite which form part of the Flightplan can be integrated
along with this simulation. Further, instead of taking the
constant sampling time of 1 second, we can make the
sampling time variable by measuring the time between two
consecutive iterations, allowing us to get more accurate
results. To further inculcate real hardware we could add
more Arduinos to simulate various sensors to be interfaced.
More complicated tasks like the processes involved in
uplinking can also be simulated by using one of the
Arduinos as a receiver emulator.[2]

 APPENDICES

A. ARDUINO 1 CODE

#include <Wire.h>
#define SLAVE_ADDRESS 0x1E

byte B[4]={0};

void setup() {
 Serial.begin(9600);
 Wire.begin(SLAVE_ADDRESS);
}

void loop() {
 Wire.onRequest(requestEvent);
}

void requestEvent()
{
 Serial.write(10);

 if(Serial.available()>0)
 {
 Serial.readBytes(B,4);
 }
 Wire.write(B,4);
}

B. ARDUINO 2 CODE

byte* current_bytes;
float voltage = 0.0;
float current = 0.0;

#define RESISTANCE0 344.3234
int count = 1, number = 1;

void setup() {
 Serial.begin(9600);
}

void loop() {
 if (Serial.read()==5)
 {
 voltage = voltage / number;
 current = voltage / RESISTANCE0;

 current_bytes = (byte *)¤t;
 Serial.write(current_bytes, 4);

 voltage = 0.0;
 }
 else
 {
 voltage = voltage + (analogRead(A0)
- analogRead(A1)) * 5.0 / 1023.0;
 number++;
 }
 count++;
}

9

C. MATLAB PARTIAL LOOP

while arduino.BytesAvailable == 0
end

flushinput(arduino1);

Field_X =
single(Mag_Field_Body(1,Counter))

MField_X = typecast(Field_X,'uint8');

fwrite(arduino1,MField_X,'uint8');

pause(0.1);

fwrite(arduino2,5);

pause(0.5);

temp = fread(arduino2,4,'uint8');

flushinput(arduino2);

current=typecast(uint8(temp),'single')

Current_Magnetorquer_BDot(:,Counter) =
0;

Current_Magnetorquer_BDot(1,Counter) =
current;

 ACKNOWLEDGEMENTS

The authors thank the following:
 Dr. Kaushar Vaidya and student members of Team

Anant, the nanosatellite team of BITS Pilani, for
their constant support throughout.

 The administration of BITS Pilani for providing the
funds necessary to procure components for the
setup.

 REFERENCES

[1] Ivanov, D.S., Karpenko, S.O., Ovchinnikov, M.Y. et al.
J. Comput. Syst. Sci. Int. (2012) 51: 106.
https://doi.org/10.1134/S1064230711060104
[2] Mr. Rutwik Narendra Jain, et. al., “Modes of Operation
for a 3U CubeSat with Hyperspectral Imaging Payload”,
69th International Astronautical Congress, 2018.

[3] Mr. Sourabh Raje, Mr. Abhishek Goel et. al.,
“Development of On Board Computer for a
Nanosatellite”.

[4] Goyal, Tushar. (2017). Design and Development of a
three-axis controlled helmholtz cage as an in-house
Magnetic Field Simulator for Cubesats.

[5] J. F. Kasper and V. Kasper, Attitude Determination and
Control System for AAUSat3 (Master Thesis), Aalborg
University , 2010.

10

BIOGRAPHY

Vatsal Jignesh Badami is pursuing
B.E. (Hons) in Computer Science
from Birla Institute of Technology and
Science, Pilani, India. He has been a
part of the On Board Computer
subsystem (OBC) of Team Anant since
January 2017 and is currently the
subsystem lead of OBC. His research

interest lies in the field of Computer Vision.

Tushar Goyal is set to receive a B.E.
(Hons.) in Electrical and Electronics
Engineering from Birla Institute of
Technology and Science, Pilani, India
in 2019. He has been with Team
Anant since January 2016. He has
been the student coordinator for the
team since March 2017, managing the
administrative and financial aspects

of the team. Prior to that, he was the subsystem lead for
Attitude Determination and Control System (ADCS) of
the team. The ADCS is responsible for developing
algorithms to determine the orientation of the satellite
and then control it according to the requirements. His
interests lies in Astrodynamics and Mission Analysis and
he aspires to pursue research, in the same field, in the
future.

Shubham Sharma has graduated with
a B. Tech in Electronics and
Instrumentation and an MSc. in
Mathematics from Birla Institute of
Technology And Science, Pilani. He
has been a part of Team Anant in
various capacities since 2013. He
currently works for Toshiba Software

India Pvt. Ltd, Bangalore.

Saurabh Manish Raje, a senior at
BITS Pilani (majoring in computer
science) has been a member of Team
Anant for over two years. He has
served as the Head of on-board
computer subsystem and played a key
role in the design and implementation
of the software architecture of the
satellite, published at the IAC-17. His

area of research is High Performance Computing, with a
focus on HPC for deep learning. He currently works as a
research assistant at INRIA in Grenoble, France on the
Rust language. He enjoys various physical pursuits such
as hiking and powerlifting.

Kushagra Aggarwal, a student of
Birla Institute of Technology and
Science, Pilani, India is pursuing
B.E. (Hons.) in Electronics and
Instrumentation Engineering. He was
a part of Team Anant from August
2016 to May 2018 contributing to the
development of Onboard Computer

subsystem. He also served as the System Engineer for the
team and played an important role in developing the
modes of operation of the satellite. He was a Research
Intern for Summer 2018 at University of Tokyo and is
currently a research scholar at IRISA, France. His
interest lies in the field of device physics and quantum
computing.

